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Abstract—A linear analysis of the stability of the flow in a laminar boundary layer under conditions of
intensive interphase mass transfer, when high mass fluxes through the gas—liquid phase boundary induce
secondary flows, is suggested. Essential interaction between flows in gas and liquid is considered in the case
of a movable liquid surface. The critical Reynolds numbers are obtained at different intensities of non-
linear mass transfer in a laminar boundary layer in the gas. The influence of the direction of the intensive
interphase mass transfer on the hydrodynamic stability is analogous to the one in the case of motionless
interface. The motion of the interface leads to a decrease of velocity gradients, which is the cause for
increase in stability of the gas flow. Flow is stable at large Reynolds number in the liquid phase. Copyright
© 1996 Elsevier Science Ltd.

1. INTRODUCTION

The sufficient changes in the hydrodynamic stability
of a flow in the boundary layer along a solid surface
due to the induction of secondary flows on the gas—
solid boundary, as a result of an intensive interphase
mass transfer between two phases, was discussed in
the first report [1]. Essential interaction between flows
in gas and liquid will be observed if a movable liquid
surface replaces the unmovable solid surface. There
will also be the effect of induction of secondary flows
as a result of intensive interphase mass transfer in the
gas-liquid systems, but this effect is superposed with
the hydrodynamic interaction between the above men-
tioned two phases. The stability under these con-
ditions is not only of theoretical, but also of practical,
interest before the fact that it defines the rate of the
number of industrial processes of absorption and
desorption.

2. NON-LINEAR MASS TRANSFER

The mathematical model of the non-linear mass
transfer in gas-liquid systems will be considered in the
approximation of the boundary layer theory [2, 3],
taking into account that the diffusive resistance is in
the gas phase [4]. It was shown that the non-linear
effects in the liquid can be omitted in ref. [5]. Hence,
we will focus our attention on the problem illustrated
in Fig. 1. The mathematical description has the fol-
lowing form :

Ou; + w,  Pu
uj—ax v; 6))- =V, ayz s
ou; Ov;
Dy, j=1,2
Ox + oy 0, j=1

u@-{—v
' 3x 1

2
X_n % 0
y dy
where u is velocity in the x direction, v is velocity in
the y direction, v is viscosity, D is the diffusion
coefficient and the indexes 1, 2 denote the gas and the
liquid, respectively.

The boundary conditions of (1) express the con-
tinuity of the velocity and the stress tensor on the
face boundary, where a thermodynamic equilibrium
is established
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where u is viscosity, ¢ is the concentration of the
transferred substance, M is the molecular mass, and
the indexes 0 and * denote the values in volume and
at the interface, respectively.

The problem (1) and (2) was solved numerically
and asymptotically [4-6].
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NOMENCLATURE

a initial value of the Blasius function & parameter
A dimensionless wave number n similarity variable
b initial value of first derivative of the 0 parameter

Blasius function v kinematic viscosity
¢ concentration, second derivative of the & variable

Blasius function I density
C dimensionless phase velocity @ dimensionless amplitude
D diffusion coefficient (0] stream function in x direction
¥é Blasius function v stream function in y direction.
i imaginary number
k parameter
M molecular mass

Re Reynolds number
Sc Schmidt number

Subscripts and superscripts

u velocity of basic stationary flow in x * conditions on interface
direction 0 conditions in volume
v velocity of basic stationary flow in y 1 gas phase
direction 2 liquid phase
X coordinate cr critical number
¥ coordinate. 1 imaginary part of complex number
max maximum
Greek symbols min  minimum
¥ parameter r real part of complex number.
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Fig. 1. Velocity profiles in the gas and liquid flows in the
boundary layer (gas-liquid system).
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Substitution of equation (3) into equations (1) and
(2) leads to
V467 'O, D7 =0, OF+2; 0,05 =0,
¥ +e®d,¥ =0,0,0) = —0,¥(0), @,0) =0,
, 2 , | €
D' (c0) = Pt ®;(0) = :’(DI(O) =20, F—‘Dz(O).
1 22 |

The solution of equation (4) is obtained [4, 5] by
determination of the initial values of f, which allows
us to further define the velocity profiles in the gas and
liquid, as solutions of a problem with initial con-
ditions :
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Table 1. Initial values of £, its derivatives and parameter k of

the gas flow (¢, = 1,0, = 0.1,6, = 0.152,8, = 6)

0 ay b Cio k
-0.3 0.2797 0.2185 1.662 0.953
—-0.2 0.1703 0.2166 1.520 1.133
—-0.1 0.07852 0.2152 1.402 1.301

0 0 0.2138 1.304 1.428

0.1 —0.06822 0.2129 1.220 1.552

0.2 —0.1283 0.2118 1.084 1.665

0.3 —-0.1816 0.2107 1.084 1.768

Table 2. Initial values of f; its derivatives and parameter k of

the liquid flow (&, = 20,8, = 0.1,8, = 0.152, 8, = 6)

6 by Ca0 k
—-0.3 0.0546 0.00033 -0.1

0 0.0536 0.00026 —0.086

0.3 0.0527 0.00022 —-0.13

while the values of ayq, bg, €10, by and ¢, for ¢, = 1,
& = 20,6, =0.1, 8, = 0.152 are given in Tables 1 and
2.

3. STABILITY ANALYSIS

In the present paper the influence of non-linear mass
transfer in the gas phase on the stability of the flows
in the gas-liquid system will be discussed.

It was shown in ref. [1] that the Orr—Sommerfeld
equation in the approximation of almost parallel flows
has the same form for the gas and the liquid, as fol-
lows:
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Values of k; (j = 1,2) are calculated and shown in
Tables 1 and 2.
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4. RESULTS AND DISCUSSION

The neutral curves (Re, 4) and (Re, C) for the gas
are shown in Figs. 2 and 3. Critical Reynolds numbers,
corresponding wave numbers and phase velocities are
presented in Table 3.

It is clearly seen, that the direction of intensive
interphase mass transfer influences the hydrodynamic
stability of the flow in the boundary layer in the gas
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Fig. 2. The neutral curves for the wave number A as a function of the Reynolds number Re (in the gas
phase).
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Table 3. Values of the critical Reynolds numbers Re, wave
velocities C,, wave numbers 4 and C, ;,, A, Obtained (in
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phase analogously to the case [1] at the conditions of
a motionless face boundary. Hence, in the case of

the gas phase) absorption (6; > 0) the rise of stability is observed. In
P Re y c y c the opposite case of desorption (8; < 0)—the stability
decreases. The motion of interface (f'(0) > 0) leads
—0.3 2511 0270  0.3863 0.304 0.3878 to a decrease of velocity gradients, which is the cause
—-02 1605 0.285 04095 0325 04108 for stabilization of the flow in all cases (increase of
-0.0 1078  0.295  0.4264 0.341 0.4281 Re,,).
0 795 030504469 0356 0.4493 The solution of equation (8) for the liquid phase
0.3 397 0330  0.4866 0.398 0.4902 A \
0.2 483 0.320 0.4749 0.386 0.4786 (f = _fz) shows that the flow is stable at the large Reyn-
0.1 605 0315  0.4620 0.373 0.4645 olds numbers (Re ~ 25000), which can be explained
e by the fact that the velocity gradient in the liquid
C 0.6
v
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Fig. 3. The neutral curves for the phase velocity C, as a function of the Reynolds number Re (in the gas
phase).
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Fig. 4. Velocity profile in liquid flow (6 = 0, ¢ = 20).
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boundary layer is low (Fig. 4) and shaped as the
profile of the Couette flow.

The effects of the intensive interphase mass transfer
in gas-liquid systems show themselves as a difference
in rates of absorption and desorption. In the cases
where the process is limited by the diffusion resistance
in the gas phase, this difference is explained by the
Marangoni effect, which manifests itself in the liquid
phase. The higher rate of absorption (compared with
the adsorption) can be made clear by the effect of
non-linear mass transfer, i.e. the influence of induced
secondary flow on the kinetics of mass transfer. Cases
where the desorption rate is higher than the absorp-
tion rate can be explained by loss of stability and
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transition to turbulence, since the flow in the gas phase
is able to be turbulent for desorption and laminar for
desorption at equal Reynolds numbers.
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