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Abstract--A linear analysis of the stability of the flow in a laminar boundary layer under conditions of 
intensive interphase mass transfer, when high mass fluxes through the gas-liquid phase boundary induce 
secondary flows, is suggested. Essential interaction between flows in gas and liquid is considered in the case 
of a movable liquid surface. The critical Reynolds numbers are obtained at different intensities of non- 
linear mass transfer in a laminar boundary layer in the gas. The influence of the direction of the intensive 
interphase mass transfer on the hydrodynamic stability is analogous to the one in the case of motionless 
interface. The motion of the interface leads to a decrease of velocity gradients, which is the cause for 
increase in stability of the gas flow. Flow is stable at large Reynolds number in the liquid phase. Copyright 

© 1996 Elsevier Science Ltd. 

1. INTRODUCTION 

The sufficient changes in the hydrodynamic stability 
of  a flow in the boundary layer along a solid surface 
due to the induction of  secondary flows on the gas-  
solid boundary,  as a result of  an intensive interphase 
mass transfer between two phases, was discussed in 
the first report [1]. Essential interaction between flows 
in gas and liquid will be observed if a movable liquid 
surface replaces the unmovable solid surface. There 
will also be the effect of  induction of  secondary flows 
as a result of  intensive interphase mass transfer in the 
gas-l iquid systems, but this effect is superposed with 
the hydrodynamic interaction between the above men- 
tioned two phases. The stability under these con- 
ditions is not  only of  theoretical, but also of  practical, 
interest before the fact that it defines the rate of  the 
number of  industrial processes of  absorption and 
desorption. 

2. NON-LINEAR MASS TRANSFER 

The mathematical  model  of  the non-linear mass 
transfer in gas-l iquid systems will be considered in the 
approximation of  the boundary layer theory [2, 3], 
taking into account that the diffusive resistance is in 
the gas phase [4]. It was shown that the non-linear 
effects in the liquid can be omitted in ref. [5]. Hence, 
we will focus our attention on the problem illustrated 
in Fig. 1. The mathematical  description has the fol- 
lowing form : 

8uj 8uj ~: uj 
uJ-~x +Vj~y = vj 8Y 2 , 

~uj &j 
& + ~ y = O ,  j = l , 2  
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where u is velocity in the x direction, v is velocity in 
the y direction, v is viscosity, D is the diffusion 
coefficient and the indexes l ,  2 denote the gas and the 
liquid, respectively. 

The boundary conditions of  (1) express the con- 
tinuity of  the velocity and the stress tensor on the 
face boundary,  where a thermodynamic equilibrium 
is established 

x = 0 ,  u=ujo,  C=Co, j =  1,2; 

8u~ du2 
y = 0 ,  ul = u 2 ,  c = c * ,  # 1 ~ y  = # 2  ~ y ,  

MD1 8c 
v j - -  p,j By' v2=O; 

y ~ oo, U 1 = UlO ~ C = C0y 

y ~ - o o ,  Uz=U20, (2) 

where # is viscosity, c is the concentration of  the 
transferred substance, M is the molecular mass, and 
the indexes 0 and * denote the values in volume and 
at the interface, respectively. 

The problem (1) and (2) was solved numerically 
and asymptotically [4-6]. 

uj = O.5jujoejO~, 

v j =  ( - l y - ' o . s j  " " ' ( ¢ j , ~ - o j ) ,  

c = Co - (Co - c*)q',  

Oj = Oj(nj), % = % % ) ,  
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NOMENCLATURE 

initial value of  the Blasius function e 
dimensionless wave number ~1 
initial value of  first derivative of  the 0 
Blasius function v 
concentration, second derivative of  the 
Blasius function p 
dimensionless phase velocity q) 
diffusion coefficient ¢ 
Blasius function q' 
imaginary number 
parameter 
molecular mass 
Reynolds number 
Schmidt number 
velocity of  basic stationary flow in x 
direction 
velocity of  basic stationary flow in y 
direction 
coordinate 
coordinate. 

Greek symbols 
7 parameter 

parameter 
similarity variable 
parameter 
kinematic viscosity 
variable 
density 
dimensionless amplitude 
stream function in x direction 
stream function in y direction. 

Subscripts and superscripts 
* conditions on interface 
0 conditions in volume 
1 gas phase 
2 liquid phase 
cr critical number 
i imaginary part of  complex number 
max maximum 
rain minimum 
r real part of  complex number. 

y ~  3 71 
El _71 
] 3 

217-17] Cas 

-I ~7 

Liquid [ 

Fig. 1. Velocity profiles in the gas and liquid flows in the 
boundary layer (gas-liquid system). 

/ L/ \ 0 . 5  
( - l y  l v ~  "yO ] 

rlj = . \ 4 D i x j  , 

~, : Sc °5 So~ : v/ , ~ j ,  j =  1,2. (3) 

Substitution of  equation (3) into equations (1) and 
(2) leads to 

¢~"+~1 '¢~O'( = 0, ¢~'+2e2 '¢2qb2 = 0, 

t P " + e . l O i t P '  = 0,01(0) = -03tP'(O), 02(0) = O, 

2 1 ~ 
0 ; ( ~ )  = , 02(oo) = ,0](0) = 20, = 0 2 ( 0 ) ,  

'21 '92 f ' l  

g I ) 2  
¢~(o) =-0.502 ~ o';(o), 

q'(O) = 1, q'(oc4 = 0, (4)  

where 

0 I - -  / /20 , 0~ - = ( / l l / ] . / 2 ) ( Y i / ' Y 2 )  0 5 ( ~ / 1 0 / b / 2 0 ) 1  5 
UlO 

M(c0 -- c*) 

s~p~ 
(5) 

The solution of equation (4) is obtained [4, 5] by 
determination of  the initial values of  J; which allows 
us to further define the velocity profiles in the gas and 
liquid, as solutions of  a problem with initial con- 
ditions : 

2 
2f ' , "+. f f , :  = O, Ii =.l ; ( ; i ) ,  ¢, = ~Tq,, 

! 

.1}(o) = a ,  .1;.(0) = b,, 

.f~(O) = O, (f~(oc) = 1), j =  1,2 (6) 

where 

(I I ~ a l o  ~ b, = y & , , ,  c, = 7 c , o ,  

ae  = O, b2  = 8 2 b 2 0 ,  t '2 = - ~ - t ' 2 0 ,  (7) 
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Table 1. Initial values off, its derivatives and parameter k of 
the gas flow (el = 1, 01 = 0.1, 02 = 0.152, 03 = 0) 

0 a]0 bt0 Clo k 

-0 .3  0.2797 0.2185 1.662 0.953 
-0 .2  0.1703 0.2166 1.520 1.133 
-0 .1  0.07852 0.2152 1.402 1.301 

0 0 0.2138 1.304 1.428 
0.1 -0.06822 0.2129 1.220 1.552 
0.2 -0.1283 0.2118 1.084 1.665 
0.3 -0.1816 0.2107 1.084 1.768 

Table 2. Initial values off, its derivatives and parameter k of 
the liquid flow (e2 = 20, 01 = 0.1,02 = 0.152, 03 = 0) 

0 b2o c20 k 

- 0.3 0.0546 0.00033 - 0.1 
0 0.0536 0.00026 - 0.086 
0.3 0.0527 0.00022 - 0.13 

while the values of  ato, b]o, clo, b2o and  C2o for el = 1, 
e 2 = 20, 01 = 0.1, 02 = 0.152 are given in Tables  l and  
2. 

( f ' - -  C) (¢p"-  A2 q~) - f " ~ o  

- ARe{(qCV-2A2qY'+ A4~o)-½(~f'-f)~p '' 

+[~(~f,,,+f,,)+A~(~f, f)](p,}, (8) 

~ = 0 ,  ~ o = 0 ,  q ¢ = 0 ;  

= ~o~ >1 6, (qY'-A2~o)'-7(q~"-AZq~) = O, 

( ~ o " - ~ 2 ~ o ) ' + A ( ~ o " - ~ 2 ~ o )  = 0, 

k x/k2+16A[A+iRe(1-C)] 
7 = 4  - 4 ' 

k = l i m ( ~ f ' - f ) ,  
~ o o  

where 

f ( ~ )  = £(~j ) ,  = i s ,  q)=q~j,  

7 = 7 j ,  k = k i ,  j =  1,2. (9) 

Values of  kj ( j  = 1,2) are calculated and  shown in 
Tables  1 and  2. 

3. STABILITY ANALYSIS 
In the present  paper  the influence of  non- l inear  mass  

t ransfer  in the gas phase  on  the stability of  the flows 
in the gas- l iquid  system will be discussed. 

It was shown in ref. [1] tha t  the Or r -Sommer fe ld  
equa t ion  in the approx ima t ion  of  a lmost  parallel  flows 
has the same form for the gas and  the liquid, as fol- 
lows : 

4. RESULTS AND DISCUSSION 
The neutra l  curves (Re, A) and (Re, C) for the gas 

are shown in Figs. 2 and  3. Critical Reynolds  numbers ,  
cor responding  wave numbers  and  phase  velocities are 
presented in Table  3. 

It  is clearly seen, tha t  the direct ion of  intensive 
in terphase  mass  t ransfer  influences the hydrodynamic  
stability of  the flow in the bounda ry  layer in the gas 
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Fig. 2. The neutral curves for the wave number A as a function of the Reynolds number Re (in the gas 
phase). 
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Table 3. Values of the critical Reynolds numbers Reef, wave 
velocities Cr, wave numbers A and Crmm, Am~, obtained (in 

the gas phase) 

0 Re~ A C~ Aml n Crmin 

-0 .3  2511 0.270 0.3863 0.304 0.3878 
-0 .2  1605 0.285 0.4095 0.325 0.4108 
-0 .0  1078 0.295 0.4264 0.341 0.4281 

0 795 0.305 0.4469 0.356 0.4493 
0.3 397 0.330 0.4866 0.398 0.4902 
0.2 483 0.320 0.4749 0.386 0.4786 
0.1 605 0.315 0.4620 0.373 0.4645 

phase  analogously to the case [1] at  the condi t ions  of  
a motionless  face boundary .  Hence, in the case of  
absorp t ion  (03 > 0) the rise of  stability is observed. In 
the opposite case of  desorpt ion (03 < 0 ) - - t h e  stability 
decreases. The  mot ion  of  interface ( f ' ( 0 )  > 0) leads 
to a decrease of  velocity gradients,  which is the cause 
for s tabil izat ion of  the flow in all cases (increase of  
Re~r). 

The solut ion of  equat ion  (8) for the liquid phase 
( f =  f2) shows tha t  the flow is stable at  the large Reyn- 
olds numbers  (Re ,,~ 25 000), which can be explained 
by the fact tha t  the velocity gradient  in the liquid 
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. . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . .  

o . ,  . . . .  
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Fig. 3. The neutral curves for the phase velocity C~ as a function of the Reynolds number Re (in the gas 

phase). 
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Fig. 4. Velocity profile in liquid flow (0 = 0, ~ = 20). 
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boundary layer is low (Fig. 4) and shaped as the 
profile of the Couette flow, 

The effects of  the intensive interphase mass transfer 
in gas-liqnid systems show themselves as a difference 
in rates of absorption and desorption. In the cases 
where the process is limited by the diffusion resistance 
in the gas phase, this difference is explained by the 
Marangoni effect, which manifests itself in the liquid 
phase. The higher rate of absorption (compared with 
the adsorption) can be made clear by the effect of  
non-linear mass transfer, i.e. the influence of induced 
secondary flow on the kinetics of mass transfer. Cases 
where the desorption rate is higher than the absorp- 
tion rate can be explained by loss of stability and 

transition to turbulence, since the flow in the gas phase 
is able to be turbulent for desorption and laminar for 
desorption at equal Reynolds numbers. 
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